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We investigate the possibility of describing fluctuational decay of a metastable 
phase macroscopically, without a detailed knowledge of the microscopic kinetics. 
Using the ideas of microscopic reversibility, we construct a hydrodynamic-type 
equation which describes the buildup of fluctuations in the region of subcritical 
sizes. An equation of Ornstein-Uhlenbeck type is used to bridge this equation 
with the one describing unstable growth of larger (overcritical) fluctuations. An 
explicit time-dependent solution to the proposed system of equations is derived 
in the spirit of the singular perturbation technique. It is shown that this solution 
also accurately approximates the solution of the Farkas-Becker-D6ring master 
equation, so that the macroscopic level of description is consistent with the 
underlying models. 
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tion; singular perturbations; master equation; random walk. 

1. INTRODUCTION 

In  f u n d a m e n t a l  app l ica t ions  of the pr inciple  of microscopic  reversibil i ty 
( M R )  there are two ma j o r  trends.  The  first is related to the u n d e r s t a n d i n g  
of the or igin of macroscop ic  ( h y d r o d y n a m i c )  laws from the f irst-principle 
reversible microscopic  kinet ics  (for a recent  review see ref. 1). The second 
t rend  is to start  with macroscop ic  equa t ions  and  use M R  to (a) u n d e r s t a n d  
their  symmet ry  and  (b) inc lude  f luc tua t ions  as a first step b e y o n d  the 
h y d r o d y n a m i c  descr ipt ion.  I t  is this t rend where some of the mos t  
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impressive results of Lars Onsager were obtained, tz'3) What remained 
unsolved after Onsager is mainly related to large fluctuations; a relatively 
recent review can be found in ref. 4. 

In the present study we apply the principle of microscopic reversibility 
to describe fluctuation-induced onset of a new phase (nucleation). Fluctua- 
tions here are not only large (they have to exceed some critical size in order 
to become unstable), but they are also crucial, as without them the 
metastable phase would never decay. We are going to construct macro- 
scopic equations which correctly describe either the decay or the buildup of 
fluctuations (Section 2). Further, in Section 3 we derive an explicit time- 
dependent solution to these equations for an arbitrary distribution of sub- 
critical fluctuations. An important point is that this macroscopic solution 
turns out to be consistent with the solution of a master equation tS' 6~ which 
models nucleation on a mesoscopic level. This is discussed in Section 4. 
Another, more formal aspect of the problem considered is that up to the 
form of the boundary conditions the mentioned master equation describes 
a typical random walk problem. In this sense the macroscopic level of 
description is related to "continuous approximation of a random walk"- -a  
well-known topic since the classical papers of Kramers and Moyal. t7) This 
problem still attracts much. attention--see, e.g., ref. 8 and references there- 
in- -and several approximation schemes were proposed, t9' ~o) Remarkably 
enough, for the specific problem considered, the ideas of MR allow one 
to approximate the time-dependent solution of the master equation 
directly, without an intermediate Fokker-Planck approximation, although 
identification with an appropriate approximation scheme can be performed 
a posteriori. This is briefly discussed in Section 5, while a more detailed 
study of the relation between the nucleation and the random walk problem 
is contained in ref. 1 i. 

2. M A C R O S C O P I C  D E S C R I P T I O N  OF N U C L E A T I O N  

Consider the entropy reduction AS(n) associated with the reversible for- 
mation of a spherical "droplet" of a new phase which contains n molecules. 
In a metastable system this entropy will have a characteristic minimum at 
some value n , ,  known as the "critical size." If the droplets are to be treated 
as fluctuations, one can formally introduce their (unnormalized) "equi- 
librium" distribution feq ~ exp{AS(n)}, which is the well-known Einstein 
probability formula. Of course, this distribution is unphysical at n > n . ,  
where AS(n) increases unboundedly. Nevertheless, one may suspect that 
well below the critical size, fluctuations are "unaware" of their potential 
instability and are in local equilibrium with monomers. As the equilibrium 
distribution is defined up to a prefactor, one can require f ]q  = f  l, where f l  
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is the number of monomers in the system. On a macroscopic level the 
decay rate (or growth rate for n > n , )  of a dropletlike fluctuation is given 
by a phenomenological expression h(n) which changes its sign at the criti- 
cal size. Decay of a distribution of such fluctuationsf(n, t) can be described 
by a continuity equation 

Of/Ot= -Oj/On ( la)  

j = h f  ( lb)  

Every subcritical fluctuation of size n will vanish after a characteristic decay 
time td,c(n)= -Sg dn/h. We deliberately do not distinguish between n = 1 
and n = 0 on the lower limit of integration, "as such differences must not 
affect the macroscopic picture. Naturally, the integral in the above expres- 
sion for the decay time is expected to converge on this limit. This really 
turns out to be the case for typical nucleation models, where due to surface 
tension effects, small fluctuations rapidly decay. From the principle of MR 
one would expect that the same time tdec(n) is required to build up a 
fluctuation of size n. In this case the only possible first-order differential 
equation which would be automatically satisfied by the equilibrium distri- 
bution is given by 

Ov/Ot = h Or~On" (2) 

with v(n, t) being the ratio of the kinetic distribution f to the equilibrium 
distribution f~q. Note that unlike f,~q ~exp(AS) (and f in the region of 
buildup of equilibrium), which may change on a microscopic scale due to 
large values of AS(n), the function v(n, t) is expected to be smooth. ~12) The 
latter property allows a hydrodynamic-type description given by Eq. (2). 
Alternatively, the standard equation (1) which will be used later for 
description of deterministic growth of fluctuations at n>n .  assumes a 
smooth function f(n, t). 

Both Eqs. (1) and (2) fail near the critical size n .  in a region charac- 
terized by the width 6 = [(1/2)O2AS/On 2] -1/2. In this region fluctuational 
corrections to the deterministic growth rate become important. Since in the 
macroscopic limit the barrier -AS(n , )  increases slower than n,  (like ..,,,2/3 
in classical nucleation theory), the value of 6 remains large, i.e., 1 ,~ 6 ,~ n , .  
On the other hand, the change of entropy in this region is of the order of 
unity, so that all the functions can be treated as smooth, and the conven- 
tional Fokker-Planck description is valid. The latter is given by Eq. (la) 
with the diffusional correction - D  Of/On added to the flux j in Eq. (lb). 
The coefficient D can be determined from the conventional Einstein- 
Onsager relation ~ . ~ D  OAS/On. (6) One can show that the change of the 



434 Shneidman and H~inggi 

diffusion coefficient in the near-critical region is negligible, which leads to 
the Ornstein-Uhlenbeck equation 

a f _ f 2  d2f 3 ( n - n , ) f ,  ~ - ~ - - ~  ,= (3) 
3t 2 On 2 017 ,, 

Equations (1)-(3) describe the problem in the singular perturbation sense. 
Below we will illustrate the technique of solution more explicitly after 
specifying the initial and boundary conditions. Note that when obtaining 
these equations, unlike previous treatments, ~z ~3~ we did not assume any 
specific form of the underlying microscopic kinetics. Also, the conventional 
Einstein-Onsager relation was employed solely near the equilibrium point 
where it is guaranteed to be valid. Otherwise--if one would wish to relate 
Ji to microscopic properties at any values of n--this relation may have a 
completely different form (see Section 4). 

3. S O L U T I O N  OF THE M A C R O S C O P I C  E Q U A T I O N S  

Consider the following initial conditions: f(n, O)= Nf(n -n~), n~ < n , .  
Physically, this means that initially there are no large size fluctuations, 
except for N artificially inserted droplets of a subcritical size n~. We switch 
to Laplace transforms of Eqs. (1) and (2) with respect to time (luckily, 
the resulting expression can be inverted) and obtain, at n l < n < n , ,  
V(n, p),~exp{-ptder Here V(n, p) is the transform of v(0, t), and the 
prefactor can be obtained from the standard boundary condition v(0, t) - 1 
[i.e., V(0, p ) =  1/p], which means that small fluctuations have an equi- 
librium distribution. In the direct vicinity of n ,  the decay time diverges. 
Here the second-order equation--the Laplace transform of Eq. (3)- -  
should be incorporated. The inner solution is given by V~~ ,.~ 
i ' e r f c [ ( n - n , ) / A ]  with m - p r  and imerfc(z) being the repeated error 
integral. ~14~ The proportionality coefficient is derived in a standard manner 
by matching the inner and outer solutions. ~2~ To the other side of the 
barrier the dropletlike fluctuations grow deterministically and can be 
described by Eq. (1). Up to an n-independent factor, one has here for the 
Laplace transform of the flux J(n, p)~exp[-ptgr(no, n)], where tgr(no, n) 
is the time of deterministic (macroscopic) growth from some value no > n ,  
to n. This value no, as well as the proportionality coefficient, can be derived 
from matching with the right-hand asymptote of the inner solution. The 
result reads 
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Here j~, is the steady-state flux over the barrier (6~ 

6 
J~t - z -  f ,  exp[AS(n,)] 

2r 

and ti(n) is the "incubation time ''c15~ 

ti(n) = tdec(n, - 6/x/~) + tg~(n, + 6/x//2, n) 

= 2 ~ l o g n * ~  2z dn ---7-- n--n. 

(5) 

(6) 

(the principal value of the integral is assumed). 
Asymptotically (i.e., 6In. --* 0), the inversion of the Laplace transform 

given by Eq. (4) can be performed through summation of residues located 
in the finite part of the complex p-plane. This gives t~JI 

N 0 o n, 
J(n , t )=j~ h,fcqfft  j ( t+tdec(n')) 

(7) 

with 

j~ t) =Jst exp{ -exp[-(ti(n) - t)/r ] } 

corresponding to the flux of nucleated particles in the absence of pre- 
existing dropletsJ ~2" ~51 

Strictly speaking, description of nucleation given by Eqs. (5)-(7) is not 
completely macroscopic, since, in principle, mesoscopic corrections to 
AS(n.) may be important. Though one can expect that relative values of 
such corrections (and their derivatives) to be small, their absolute values 
may not be, leading to dramatic changes in the values of Jst. Consider, 
e.g., the logarithmic term discussed in ref. 16, or the "Lothe-Pound" 
correction, liT) Nevertheless, the expression for the reduced flux, j(n, t)/js t, is 
completely macroscopic: It is determined by the kinetics h(n) and by the 
thermodynamics--the second derivative of the entropy, which enters 
through 6, being insensitive to the details of the microscopic behavior. We 
will now illustrate this by choosing a specific type of microscopic kinetics 
and demonstrating that Eq. (7) approximates the solution of the corre- 
sponding master equation. 

4. NUCLEATION FROM A MASTER EQUATION 

The classical model .5' 61 assumes the following master equation: 

Of,,/Ot=j, ,-j ,+,,  j ,=fl , ,_ , f , ,_ ,--a, , f , ,  (8) 
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Here the gain fl,, is usually taken from simple kinetic model of collisions 
of molecules with the surface of the nucleus. The loss coefficient ~,, is 

eq eq constructed from the detailed balance condition f l , , - l f , -~  =ct,,f,, with 
supposedly known equilibrium distribution f~q. The left-hand boundary 
condition of the same type as discussed above is assumed:f~-----f~q= cons t .  

This condition can be considered for time scales which are smaller than the 
lifetime of the metastable state. Otherwise, the depletion of monomers is to 
be taken into account. ~8~ In the leading approximation the deterministic 
growth rate h can be associated with the difference of the gain and loss 
coefficients f l , , -  ct,,. The objective is, however, to obtain a macroscopiclike 
expression which would not contain any kind of finite differences. This can 
be done if one notes that the functions fl,,, AS(n), etc. (but not f,~q !) are 
expected to be smooth. Thus, from the detailed balance condition one 
obtains "3~ 

h ~/~,,{ 1 - e x p ( -  OAS/On)} (9) 

The latter can be considered as a nonlinear (or maybe more accurately, 
discrete) form of the Einstein-Onsager relation with/%, associated with the 
diffusion coefficient D (see also ref. 19). Note that despite the smoothness 
of the entropy as a function of n, its derivative is not necessarily small, 
as the values of AS(n) are large (macroscopic), so that in a general 
case Eq. (9) cannot be linearized. More explicitly, consider the standard 
expression 

AS(n)=a . n - l . n  2/3, a= Al.i/kT (10) 

with A/~ being the difference of chemical potentials between phases and l 
the reduced "surface tension." Substituting this in Eq. (9), one obtains 
h = / 3 , { 1 - e x p [ a ( ( n . / n )  1/3- 1)]}. The parameter a describes the effect of 
discreteness of sizes n. I~z'2~ The conventional Einstein-Onsager relation, 
which would have the form h =/%,al-1 - ( n . / n ) l / 3 ] ,  is recovered at all sizes 
only for a,~ 1. However, physically one typically encounters larger values 
of a unless nucleation is observed very close to the critical temperature. 

We now expect that the time-dependent solution of the master equa- 
tion (8) can be approximated by Eq. (7) with the growth rate given by the 
above expression. In Fig. 1 we illustrate this by comparing Eq. (7) with the 
numerical solution of the master equation for fl,, ~ n 2/3. We consider that 
the accuracy is quite good (no matching parameters were used )--recall 
that the master equation has nonlinear coefficients and that the discreteness 
parameter in the example considered was larger than unity--i.e., a ~ 1.2. 
For example, the standard Kramers-Moyal  truncation procedure in this 
case would lead to an exponentially large error even for the steady-state 
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Fig. 1. Time dependence of the reduced nucleation flux j (n ,  t ) / j s  t at different sizes n and for 
different values of the ratio R-~  N / f ~  q, ( N  is the number of dropletlike fluctuations with size 
n 1 = 2 0  created at t = 0 ,  and f~q is their equilibrium concentration). Lines: macroscopic 
solution (7) with the growth rate (9); symbols: numerical results from the master equation (8). 

Other parameters: z =  7.96 (when measured in the same units as " t i m e " ) ,  - - A S ( n , ) = 2 9 . 9 ,  
n ,  = 50.1. 

flux Jst, not to mention the more delicate time-dependent behavior. At 
present we cannot prove in a general form that Eq. (7) approximates the 
time-dependent solution of the master equation with asymptotic accuracy 
for &/n, --* 0, although we suspect that this is the case. Nevertheless, we can 
demonstrate that this solution is accurate in a sense of a specific criterion, 
namely the so-called time lag, being defined as 

tL(n) = dt {1 - j ( n ,  t)/jst} (11) 

The mathematical convenience of this criterion is due to the possibility of 
its direct derivation from the master equation both exactly and asymptoti- 
cally. 12~ Physically, it can be directly measured in an experiment (2~) and is 
often the on ly  observable indicator of time-dependent effects. From the 
macroscopic solution--Eq. (7 ) - -one  has 

tL(n ) = ti(n ) + yz + N/(f~qhl) (12) 
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where ~, = 0.5772... is the Euler constant. An asymptotic study of the exact 
expression for the time lag from the master equation in the absence of 
preexisting droplets (N=  0) was performed in ref. 20, and its extension to 
account for such droplets ~ gave precisely Eq. (12). This proves that at 
least for the mentioned criterion (the time lag) the macroscopic description 
is asymptotically equivalent to the one given by the master equation. Note 
that the expression for the time lag contains, in fact, three free parameters, 
namely n~ (the size of inserted subcritical droplets), N (their number), and 
n (the overcritical size at which the flux is observed). Thus, the level of 
comparison is rather detailed. 

5. THE F O K K E R - P L A N C K  EQUATION A N D  
HIGHER A P P R O X I M A T I O N S  

It is possible to construct a unique Fokker-Planck equation with 
correct outer branches given by Eqs. (1) and (2), which has been done in 
ref. 11. Such an equation accurately approximates the underlying micro- 
scopic kinetics, which in reality may not have a Fokker-Planck form--recall 
the master equation of Section 4. For the master equation (8) this Fokker-  
Planck equation can be also obtained in the leading order of the general 
approximation scheme proposed by H~inggi et aL ~~ With asymptotic 
accuracy such an equation will be satisfied by the same solution (7), which 
means that in the sense of the mentioned criterion of comparison--the 
time lag--it provides an accurate approximation to the random walk 
master equation (8). On a less formal level, however, a Fokker-Planck 
equation will hardly be an advantage compared to macroscopic equations 
of Section 2, which are incomparably simpler for solution. 

In case one would wish to improve the accuracy beyond the macro- 
scopic level of description, one simply has to replace carefully the finite 
differences in Eq. (8) by derivatives, up to the second order, and treat the 
"extra" terms as corrections. An important point, however, is that when 
considering subcritical sizes--this is required to refine the constants in 
Eq. (7)--one has first to switch from Eq. (8) to an equation for the 
reduced distribution v(n, t), ~2~ as it is this function [and not f (n ,  t)!] 
which is a smooth with respect to n in this region. 

6. C O N C L U S I O N  

The principle of microscopic reversibility allows one to describe the 
fluctuation-induced nucleation by hydrodynamic-type equations without a 
detailed knowledge of the underlying microscopic kinetics. As shown both 
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numerically and analytically, the solution of these macroscopic equations is 
consistent with predictions of the Farkas-Becker-D6ring master equation 
which models nucleation on a mesoscopic level. 
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